Pseudo-enzymatic hydrolysis of 4-nitrophenyl acetate by human serum albumin: pH-dependence of rates of individual steps.

نویسندگان

  • Paolo Ascenzi
  • Magda Gioia
  • Gabriella Fanali
  • Massimo Coletta
  • Mauro Fasano
چکیده

Human serum albumin (HSA) displays esterase activity reflecting multiple irreversible chemical modifications rather than turnover. Here, kinetics of the pseudo-enzymatic hydrolysis of 4-nitrophenyl acetate (NphOAc) are reported. Under conditions where [HSA]≥ 5×[NphOAc] and [NphOAc]≥ 5×[HSA], the HSA-catalyzed hydrolysis of NphOAc is a first-order process for more than 95% of its course. From the dependence of the apparent rate constants k(app) and k(obs) on [HSA] and [NphOAc], respectively, values of K(s), k(+2), and k(+2)/K(s) were determined. Values of K(s), k(+2), and k(+2)/K(s) obtained at [HSA]≥ 5×[NphOAc] and [NphOAc]≥ 5×[HSA] are in good agreement, the deacylation step being rate limiting in catalysis. The pH-dependence of k(+2)/K(s), k(+2), and K(s) reflects the acidic pK(a) shift of the Tyr411 catalytic residue from 9.0 ± 0.1 in the substrate-free HSA to 8.1 ± 0.1 in the HSA:NphOAc complex. Accordingly, diazepam inhibits competitively the HSA-catalyzed hydrolysis of NphOAc by binding to Tyr411.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of Human Serum Albumin with Ethyl 2-[2-(dimethylamino)-4-(4-nitrophenyl)-1,3-thiazole-5-yl]-2-oxoacetate as a Synthesized Ligand

The interaction of human serum albumin with Ethyl 2-[2-(dimethylamino)-4-(4-nitrophenyl)- 1,3-thiazole-5-yl]-2-oxoacetate was investigated by using isothermal titration UV-visible spectrophotometry in tris-buffer, pH 7.4. According to these results, it was found that there are a set of 4 binding sites for this ligand on HSA with positive cooperativity in the binding process. This thiazole deriv...

متن کامل

A new automated method for phenotyping arylesterase (EC 3.1.1.2) based upon inhibition of enzymatic hydrolysis of 4-nitrophenyl acetate by phenyl acetate.

A new method for phenotyping human serum arylesterase (EC 3.1.1.2) is described and evaluated. The aromatic esters, phenyl acetate and 4-nitrophenyl acetate, were compared as substrates for spectrophotometric measurement of arylesterase activity. A method for arylesterase phenotyping, based upon inhibition of the enzymatic hydrolysis of 4-nitrophenyl acetate by phenyl acetate, was developed. Th...

متن کامل

Pseudo-esterase activity of human albumin: slow turnover on tyrosine 411 and stable acetylation of 82 residues including 59 lysines.

Human albumin is thought to hydrolyze esters because multiple equivalents of product are formed for each equivalent of albumin. Esterase activity with p-nitrophenyl acetate has been attributed to turnover at tyrosine 411. However, p-nitrophenyl acetate creates multiple, stable, acetylated adducts, a property contrary to turnover. Our goal was to identify residues that become acetylated by p-nit...

متن کامل

Ligand Binding to the FA3-FA4 Cleft Inhibits the Esterase-Like Activity of Human Serum Albumin

The hydrolysis of 4-nitrophenyl esters of hexanoate (NphOHe) and decanoate (NphODe) by human serum albumin (HSA) at Tyr411, located at the FA3-FA4 site, has been investigated between pH 5.8 and 9.5, at 22.0°C. Values of Ks, k+2, and k+2/Ks obtained at [HSA] ≥ 5×[NphOXx] and [NphOXx] ≥ 5×[HSA] (Xx is NphOHe or NphODe) match very well each other; moreover, the deacylation step turns out to be the...

متن کامل

Hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle.

We report three experiments which show that the hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle occurs at a site on the enzyme different than the active site for CO2 hydration. This is in contrast with isozymes I and II of carbonic anhydrase for which the sites of 4-nitrophenyl acetate hydrolysis and CO2 hydration are the same. The pH profile ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 424 3  شماره 

صفحات  -

تاریخ انتشار 2012